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Abstract—NASA’s Solar Dynamics Observatory (SDO) mission
collects large data volumes of the Sun’s daily activity. Data
compression is crucial for space missions to reduce data storage
and video bandwidth requirements by eliminating redundancies
in the data. In this paper, we present a novel neural Transformer-
based video compression approach specifically designed for the
SDO images. Our primary objective is to efficiently exploit the
temporal and spatial redundancies inherent in solar images to
obtain a high compression ratio. Our proposed architecture
benefits from a novel Transformer block called Fused Local-
aware Window (FLaWin), which incorporates window-based self-
attention modules and an efficient fused local-aware feed-forward
(FLaFF) network. This architectural design allows us to si-
multaneously capture short-range and long-range information
while facilitating the extraction of rich and diverse contextual
representations. Moreover, this design choice results in reduced
computational complexity. Experimental results demonstrate the
significant contribution of the FLaWin Transformer block to
the compression performance, outperforming conventional hand-
engineered video codecs such as H.264 and H.265 in terms of
rate-distortion trade-off.

Index Terms—Solar Dynamics Observatory, Neural Video
Compression, Swin Transformer, FLaWin

I. INTRODUCTION

NASA’s Solar Dynamics Observatory (SDO) mission gath-
ers 1.4 terabytes of data that can be used to understand the
effect of the Sun on the Earth each day [1]. Due to the problem
of onboard data storage and bandwidth limitations, data com-
pression is inevitable in space missions. Both hand-crafted [2]
and neural-based [3], [4] codecs have been proposed to tackle
the challenge of data compression on this space mission.

Recently, neural image/video compression methods have
achieved remarkable performance compared with their tradi-
tional counterparts [5]. All the compression methods attempt to
exploit the redundancies in images and videos. There are three
types of redundancies in image signals: spatial redundancy,
visual redundancy, and statistical redundancy. In addition to
the above-mentioned redundancies in image signals, video

This research is based upon work supported by the National Aeronautics
and Space Administration (NASA), via award number 80NSSC21M0322
under the title of Adaptive and Scalable Data Compression for Deep Space
Data Transfer Applications using Deep Learning.

signals inherit the advantage of temporal redundancy, which
allows video compression to obtain a higher compression ratio
compared with the still image compression [6].

In image/video compression, a transformation function is
utilized to map the data to an uncorrelated latent space. The
more decorrelated and energy-compacted latent representation
is obtained by transforming, the more effective coding can be
achieved. Unlike traditional codecs which use linear transfor-
mations, neural data compression is based on nonlinear trans-
formations. Neural networks are capable of approximating ar-
bitrary functions and can operate as a nonlinear transformation
[7]. This property of neural networks provides the opportunity
to transform the data with nonlinear dependency into a more
decorrelated representation.

Any improvement of the transformation function of a neural
data compression algorithm can lead to coding supremacy. The
transforming part of most neural data compression methods
is based on convolutional neural networks, which have failed
to take into account long-range dependencies. To address this
shortage, we propose to replace the convolutional network with
a Transformer-based architecture. Our proposed Transformer
framework leverages the self-attention module to capture
global relationships. In addition, we equip our Transformer
block with a Fused Local-aware Feed Forward (FLaFF) layer
to strengthen the extraction of rich and diverse local textures,
which is crucial for compression tasks. These enhancements
can promote transformation’s ability to project the data into a
more decorrelated space.

Contributions of this paper. This paper presents a novel
learned video compression approach specifically designed for
compressing SDO images. The proposed algorithm aims to
effectively exploit both spatial and temporal redundancies
inherent in the dataset which enables the achievement of
a high compression ratio. To enhance the capabilities of
the non-linear transform and generate more decorrelated and
energy-compacted latent code, we propose a Transformer-
based transformation. Our proposed Transformer block lever-
ages window-based self-attention modules and locally en-
hanced blocks, enabling the capture of both short-range and
long-range relationships which are crucial for compression
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Fig. 1. Visual comparison of the proposed neural video compression
approaches (SSF-Swin and SSF-FLaWin) with other traditional codecs in
terms of bit-rate/distortion [bpp↓/PSNR↑]. SSF-FLaWin demonstrates lower
distortion in terms of PSNR compared to the other codecs, indicating its
superior ability to preserve image quality. Best viewed on screen.

tasks. This approach also helps in reducing computational
complexity.

The remainder of the paper is organized as follows. Section
II reviews the neural-based compression methods and the
importance of compression in the SDO mission. Section III
describes our proposed method. The experiments and ablation
studies are discussed in section IV with a conclusion in section
V.

II. RELATED WORK

A. Neural Image Compression

Learned image compression methods often employ the
transform coding scheme, which comprises four core steps [8].
The first step utilizes an analysis transform to convert the input
image into a compact and decorrelated latent representation.
This transformation is crucial in reducing the data’s redun-
dancy. Once the latent representation is obtained, the second
step involves quantization, where the continuous-valued latent
variables are discretized to obtain discrete values. In the third
step, entropy coding is employed, where an entropy model is

utilized to generate a stream of ones and zeros. Finally, in the
fourth step, a synthesis transform is applied to the quantized
latent representations to reconstruct the original image [9].

Neural image compression networks commonly utilize the
autoencoder architecture [9], which allows for the implementa-
tion of an approximately invertible nonlinear transformation.
Alongside the transformation network, the entropy model is
utilized for entropy coding, responsible for estimating the rate
of the latent representation, and both are learned in an end-to-
end fashion. However, learning the network parameters poses a
challenge due to the non-differentiable nature of quantization,
resulting in gradients that can be either zero or infinity. To
address this issue, several solutions have been proposed to
approximate quantization using differentiable operations [10],
[11], [12]. A prevalent method to tackle the challenge of
non-differentiable quantization is to replace it with additive
uniform noise [10]. This substitution effectively transforms the
autoencoder into a variational autoencoder (VAE) [13] with a
uniform encoder.

In early work, Ballé et al. [14] introduced the compressive
autoencoder as a powerful image compression framework that
achieved comparable performance to the JPEG2000 standard
[15]. The compressive autoencoder employed the generalized
divisive normalization (GDN) function to enable effective non-
linear transformations and use a fully-factorized entropy model
to accurately estimate the bit rate associated with the latent
representation. To further improve the entropy model, Ballé
et al. [16] designed the hyperprior model, which conditions
the distribution of the latent representation on hyperprior. This
conditional distribution is approximated using a Gaussian scale
mixture (GSM), with the scale parameters acquired from the
decoding hyperprior. Building upon this research, Minnen et
al. [17] extended the entropy model from a Gaussian scale
mixture to a Gaussian mixture model (GMM) by incorporating
an autoregressive ingredient.

B. Neural Video Compression
Most neural video compression algorithms consist of two

components: predictive coding and transform coding [5]. Pre-
dictive coding is employed in inter-frame coding to exploit
temporal redundancy. Inter-frame coding tries to predict the
current frame from one or more previously reconstructed
frames. In addition to inter-frame coding, intra-frame coding
exists in the video compression pipeline, which leverages
spatial redundancy to compress the frame. In intra-frame cod-
ing, the process is analogous to image compression methods.
As a result, frames are classified into three groups in video
codecs: 1. I-frame (Intra-coded): compressed independently
using image codecs; 2. P-frame (predicted): predicted from
the past frames. 3. B-frames (bi-directional): predicted from
the past and future frames [18].

Recently, neural video compression methods have outper-
formed traditional video compression methods. Taking inspi-
ration from the traditional hybrid video compression schemes,
Lu et al. [19] introduced the Deep Video Compression
(DVC) network as the first end-to-end deep video compression
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Fig. 2. An overview of neural video compression network. (a) The architecture of the I-frame compression model. (b) The architecture of the P-frame
compression model, which consisting of motion compression and residual compression networks. The motion information and scale field are jointly estimated
and encoded into a quantized latent representation ŵt. In the I-frame model, the previous reconstruction frame x̂t−1 is warped using the decoded motion
and scale fields Ft, resulting in the prediction x̄t. The residual Rt is then computed as the difference between the original current frame xt and the warped
prediction x̄t. The residual is further encoded into a quantized latent representation r̂t, which is subsequently decoded to obtain R̂t. The final reconstructed
current frame x̂t is obtained by adding R̂t to the warped prediction x̄t, resulting in x̂t = x̄t + R̂t. Entropy coding for each compression network is excluded
for the sake of simplicity.

framework. This pioneering framework used a pre-trained
Flownet [20] for optical flow estimation and employed bilinear
warping techniques for motion compensation. For motion
and residual compression, two autoencoder-based networks
were used. Agustsson et al. [21] proposed the Scale-Space
Flow (SSF) framework, which aims to mitigate the difficulties
associated with fast motion in optical flow estimation. Their
approach involves the incorporation of a scale channel as an
uncertainty parameter, allowing the application of Gaussian
blur to regions prone to disocclusions and rapid motion. Hu
et al. [22] presented the Feature-space Video Compression
(FVC) network as an advanced version of DVC. Their ap-
proach focuses on performing essential tasks, including motion
estimation, motion compression, motion compensation, and
residual compression, in the feature domain instead of the
pixel space. In the framework presented in [23], a cross-scale
prediction module is incorporated to facilitate efficient motion
compensation. Inspired by the observation that videos consist
of a series of images with temporal redundancy, researchers
[24], [25] have extended image compression networks by
adopting a 3D autoencoder-based framework to handle video
data. The primary objective of this approach is to exploit
spatial-temporal redundancies in videos by utilizing spatiotem-
poral transformations. To further enhance the performance
of these networks, Habibian et al. introduced a temporally

conditional entropy model to leverage temporal correlations
within the latent space.

In contrast to DVC, SSF, and FVC networks, which rely
on a single previous frame as a reference frame, Lin et al.
[26] propose a method that utilizes several previous frames to
improve the accuracy of predicting the current frame. Mentzer
et al. [27] propose a neural video compression model based on
Generative Adversarial Networks (GANs) [28]. Their objective
is to enhance the perceptual quality of the reconstructed frames
by leveraging the power of GANs. More recently, Mentzer et
al. [29]present a novel network that avoids explicit motion
estimation. Instead, they leverage a temporal transformer for
entropy modeling.

III. METHODS

A. Overview

Our baseline model is the Scale-Space Flow (SSF) network
[21], which is one of the popular low-latency video compres-
sion models. As shown in Fig. 2, it is comprised of I-frame
compression and P-frame compression models. The P-frame
compression model consists of two parts: motion compression
network and residual compression network. These three main
networks, i.e., I-frame compression, motion compression, and
residual compression are based on the autoencoder network
architecture [10].
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Fig. 3. Swin Transformer based architecture is designed for compressing I-frame, scale-space flow, and residual. (b) Two successive Swin Transformer
blocks. Q shows scalar quantization. AE and AD refer to the arithmetic encoder and decoder, respectively.

The most important contribution of the SSF network is the
generalization of optical flow to scale-space flow by adding a
scale field to the motion field as a third channel. The scale field
contributes to the model to blur the regions where disocclusion
and fast motion exist, leading to a better inter-frame prediction.
The inter-frame prediction is obtained by performing a trilinear
warping on progressively blurred versions of the reference
frame [21]. In the following sections, we will describe their
novel components in P-frame compression.

1) Motion Compression: The proposed motion compres-
sion network utilizes an autoencoder-based architecture, where
the input consists of the current frame xt and the previous
reconstruction frame x̂t−1. The encoder of the architecture is
designed to jointly compute and encode the motion informa-
tion that presents between the two consecutive frames. On the
decoder side, the quantized latent representation of motion is
decoded into three vectors: F = (Fx, Fy, Fz). The first two
vectors, Fx and Fy , represent horizontal and vertical motion
vectors, respectively, and have dimensions of R2×H×W . The
third vector, Fz , corresponds to a one-channel scale field with
dimensions of RH×W .

2) Motion Compensation: The motion compensation mod-
ule plays a crucial role in predicting the current frame x̄t using
the reference frame x̂t−1 and the motion and scale fields.
To achieve this, a scale-space warping operation is employed,
where the reference frame undergoes progressive convolution
with a Gaussian kernel. This convolution generates a series of
blurred versions of the reference frame:

X = [x̂t−1, x̂t−1 ∗G(s1), ..., x̂t−1 ∗G(sM )], (1)

where G(si) represents the Gaussian kernel with a scale
parameter of si, the motion-compensated pixel value for each
pixel located at the coordinate [x, y] is obtained by applying
trilinear interpolation in the scale-space volume. The process
can be described as follows:

x̄t = Scale-Space-Warp(x̂t−1, F )

x̄t[x, y] = X[x+ Fx[x, y], y + Fy[x, y], Fz[x, y]].
(2)

B. Transformer-based Architecture
The Transformer [30] is originally proposed in the field

of natural language processing (NLP) and had a profound
impact on this domain. The remarkable accomplishments
of the Transformer in NLP have motivated researchers to
embrace the Transformer architecture in computer vision tasks.
These tasks encompass a broad spectrum of applications, such
as object detection [31], image classification [32], semantic
segmentation [33], and numerous other applications [34].
ViT [35] is the first vision Transformer which utilizes a
pure Transformer-based architecture for image classification
and yields impressive results compared with traditional CNN
networks [36], [37], [38], [39]. It splits an image into non-
overlapping patches and captures long-range dependencies by
using multi-head self-attention module [35]. ViT has a high
computational complexity due to the globally computed self-
attention. The Swin Transformer [40] is proposed to reduce
the computational complexity from quadratic to linear with
respect to the patch numbers. The computational complexity
is reduced because the Swin Transformer calculates self-
attention locally within non-overlapping windows. The Swin
Transformer network is also able to produce hierarchical
representation which is very necessary for dense prediction
tasks [41]. We have used the Swin Transformer to build the
encoders and decoders of the Scale-Space Flow network. Fig.
3(a) shows the Swin Transformer-based architecture which is
used to compress the I-frame, residual and scale-space flow.
We have also extended the Swin Transformer block to the
Fused Local-aware Window (FLaWin) Transformer block to
enhance preserving local information.

C. Swin Transformer-based Encoder/Decoder
1) Encoder: The Swin Transformer, a pivotal component

utilized as an encoder in the architecture [40], comprises four
essential blocks: Patchify, Linear Embedding, Swin Trans-
former block, and Patch merging. To initiate the encoding
process, the input image x ∈ RCin×H×W undergoes Patchify,



which divides it into non-overlapping patches. Secondly, these
patches are flattened and mapped into an embedding space
with dimension C by a linear embedding block. The output
of these two blocks is then fed into the multiple Swin
Transformer blocks and patch merging layers. The Swin Trans-
former block, a fundamental building block, is instrumental in
maintaining the number of patches while efficiently extracting
semantic features. This is achieved by performing local self-
attention computations within each non-overlapping window,
allowing the model to capture fine-grained meaningful infor-
mation effectively. The patch merging layer generates hierar-
chical feature maps by halving the resolution of the feature
map and doubling the channel number of the feature map,
ensuring effective feature extraction and spatial information
aggregation.

2) Decoder: The Swin Transformer decoder is the inverse
symmetric of the encoder. We replace the patchify block
with a unpatchify block, the patch merging layer with the
patch splitting layer, and the linear embedding layer with a
deembedding layer.

3) Swin Transformer Block: The Swin Transformer block
is the main part of the Swin Transformer architecture. Unlike
the traditional Transformer block which is composed of multi-
head self-attention (MSA), the Swin Transformer block is
built upon a window-based multi-head self-attention (W-MSA)
which conducts self-attention within local windows. The
Window-based multi-head self-attention decreases the compu-
tational complexity; however, it fails to take into account the
information interaction across different windows. To remedy
this issue, the shifted-window-based multi-head self-attention
(SW-MSA) is employed after the W-MSA module. As shown
in Fig. 3(b), the Swin Transformer block consists of a layer
normalization (LN), window-based multi-head self-attention
(W-MSA) or shifted-window-based multi-head self-attention
(SW-MSA), residual connection and a Feed-Forward Network
(FFN), including a 2-layer MLP with GELU function as
the nonlinearity. The process of two consecutive Transformer
blocks can be defined as follows:

ẑl = W -MSA(LN(zl−1)) + zl−1,

zl = MLP (LN(ẑl)) + ẑl,

ẑl+1 = SW -MSA(LN(zl)) + zl,

zl+1 = MLP (LN(ẑl+1)) + ẑl+1,

(3)

where ẑl and ẑl+1 show the outputs of W-MSA and
SW-MSA of the l, and l+1 blocks, respectively. The self-
attention mechanism employed in W-MAS and SW-MSA can
be formulated as follows:

Attention(Q,K,V ) = softmax(
QKT

√
d

+B)V , (4)

Where Q, K, and V ∈ RM2×d show the query, key and
value matrices respectively. The dimension of the key is
denoted by d, and M2 represents the number of patches
in a window. The learnable relative position encoding is
captured by the matrix B, which is derived from the bias

matrix B′ ∈ R(2M−1)×(2M−1) using learnable parameters.
When there are K attention heads, the attention mechanism is
applied K times in parallel, and the outputs of all heads are
concatenated together. Finally, the concatenated outputs are
linearly projected to obtain the final result.

D. Fused Local-aware Window Transformer Block
The feed-forward network (FFN) plays a crucial role in the

Transformer block, known for its feature enhancement capabil-
ities. In our proposed Transformer block, named Fused Local-
aware Window (FLaWin), we replace the conventional FFN of
the Swin Transformer block, comprising MLP layers, with our
introduced fused local-aware feed forward (FLaFF) network.
This incorporation of FLaFF in the Transformer block enables
the capture of both local and long-range information while
facilitating the extraction of diverse and multi-scale represen-
tations. Notably, the inclusion of local information is required
for image compression tasks, where preserving fine-grained
details is indispensable.

1) Fused Local-aware Feed Forward (FLaFF): Our pro-
posed FLaFF is composed of an Inception module which helps
to extract local information and multi-scale representations.
In the FLaFF architecture, as depicted in Fig. 4(b), first each
token is passed through a linear projection layer, consisting of
1× 1 convolution layers, to increase its dimension. Second,
the tokens are reshaped to a 2D token map, which is well-
suited for the Inception block. Third, the Inception block is
employed to extract diverse and local information from the
2-D token maps in parallel. Fourth, the 2D token maps are
flattened and passed to another linear layer to project and lower
the dimension of the input channels.

As illustrated in Fig. 4(c), the Inception block operates
by dividing the 2-D input along the channel dimension and
directing these split components into three separate branches.
Each branch involves a depth-wise convolution with a kernel
size of 3× 3. Utilizing depth-wise convolution in the Inception
block offers two valuable benefits: it reduces computational
complexity and enhances the modeling capabilities for channel
attention. The convolution operations of these three branches
are performed in parallel, and their outputs are concatenated
along the channel dimension to form the final output of
the Inception block. This architecture allows the FLaFF to
effectively capture local details and diverse representations,
significantly contributing to the overall performance.

E. Training Strategy
1) Loss Function: The rate-distortion loss is used to train

our network. If the length of the sequence is T , the total loss
can be written as [21]:

D+λR =

T−1∑
t=0

d(xt, x̂t)+λ[R(I0)+

T−1∑
t=1

R(wt)+R(rt)], (5)

where D represents the distortion measure, such as the Mean
Squared Error (MSE) between the original and reconstructed
frames. R denotes the bitrate to encode the quantized latent
representation. I0, wt, rt represents I-frame, scale-space flow
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and residual latent, respectively. λ is the Lagrangian coefficient
that controls the trade-off between rate and distortion.

2) Quantization: To do entropy coding, quantization pro-
cess need to be replaced with a soft differentiable function to
make the end-to-end training feasible. In this paper, we add
uniform noise to latent representations [10] to approximate
the hard quantization during training. In the test phase, hard
quantization i.e., a rounding operation is employed.

3) Entropy Model: The entropy measurement should be
used to estimate the bitrate for encoding the quantized la-
tent representation. Therefore, it is required to estimate the
probability distribution of quantized latent representation to
compute the corresponding entropy. To do so, the hyper-prior
network [16] is utilized to estimate the probability distribu-
tion. The hyper-prior network proposes a hyper-prior latent
representation z, as side information to capture the latent rep-
resentation’s spatial dependencies. It results in computing the
probability distribution of the latent representation precisely.
The probability distribution of the quantized hyper-latent is
estimated with a non-parametric fully factorized density model
[16]. The probability of quantized latent ŷ conditioned on
quantized hyper-prior ẑ is modeled by a zero-mean Gaussian
distribution:

Pŷ|ẑ(ŷ|ẑ)∼N (0, σ2), (6)

the scale parameter σ is determined by the decoded quantized
hyper-prior ẑ.

IV. EXPERIMENTS

A. Dataset
This research project relies on the extensive data collected

during the Solar Dynamics Observatory (SDO) mission. The
SDO mission is equipped with three instruments that operate
continuously to capture essential information from the Sun
[42], [43], [44], [45]. The Helioseismic and Magnetic Imager
(HMI) is specifically designed to study oscillations and the
magnetic field present on the solar surface, known as the pho-
tosphere [46]. It provides valuable insights into the dynamic
behavior and magnetic properties of the Sun. The Atmospheric

Imaging Assembly (AIA) captures full-sun images of the
solar corona, covering a wide area of approximately 1.3 solar
diameters. With a spatial resolution of around 1 arcsec, the
AIA captures images at multiple wavelengths every 12 seconds
[47]. This instrument offers detailed observations of the solar
corona, which plays a significant role in understanding solar
phenomena. To gain a deeper understanding of the variations
that influence Earth’s climate and near-Earth space, the Ex-
treme Ultraviolet Variability Experiment (EVE) investigates
the solar Extreme Ultraviolet (EUV) irradiance with high
spectral precision [48].

The original SDO dataset has undergone preprocessing to
generate a machine learning-ready dataset known as SDOML
[49], which is used in this study. The SDOML dataset com-
prises AIA images captured at different wavelengths, including
94, 131, 171, 193, 211, 304, 335, 1600, and 1700 Å with a
sampling rate of 6 minutes. In this paper, AIA images at the
wavelength of 94 are utilized for both the training and testing
phases. To train video compression networks on the SDOML
dataset, we put four consecutive images together to make
temporal chunks of four frames. Following the traditional
codecs, during the test phase, we stack 30 consecutive images
and create video clips with a GOP size of 30.

B. Implementation Details
During the training process, our models are

trained with a wide range of hyperparameters λ ∈
{0.00125, 0.0025, 0.005, 0.01, 0.02, 0.04, 0.08, 0.160, 0.320}
to cover various rate and distortion scenarios. The training
is conducted for 100 epochs, with batches of size 16. Each
batch comprises randomly cropped patches with dimensions
of 256x256, extracted from the original 512x512 images. To
optimize the model, we employ the Adam optimizer [50] with
an initial learning rate of 10−4, which gradually decreases to
1.2× 10−6 throughout the training process.

C. Ablation Study
To evaluate the effect of the Swin Transformer and how

adding FLaFF to the Swin Transformer block help the video
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compression, we construct two versions of the Scale-Space
Flow network. First, we replace the three convolutional au-
toencoders in I-frame and P-frame models with the Swin
Transformer-based architecture. This model is called SSF-
Swin. Then, we further enhance the Swin Transformer block
by incorporating the proposed FLaWin Transformer block,
which aims to improve the information extraction capability
of the Transformer. This variant is termed SSF-FLaWin. As
results are depicted in Fig. 5, the SSF-Swin network achieves
better performance in terms of rate-distortion trade-off com-
pared to the SSF-Conv model. The superior performance of the
SSF-Swin can be attributed to its ability to exploit the long-
range correlations within the data, enabling better exploitation
of spatial and temporal redundancies. Moreover, the introduc-
tion of the FLaWin Transformer block in SSF-FLaWin further
contributes to the compression performance. The architectural
design of FLaWin allows for the simultaneous capture of local
details and long-range correlations, leading to the extraction
of diverse and informative representations.

D. Comparison with the Traditional Video Codecs

We conducted a comparison of the rate-distortion perfor-
mance of our proposed network, SSF-FLaWin, with classical
video compression standards and neural image compression on
the SDOML dataset [3], [51], which serves as an equivalent
to intra-frame compression. The distortion is measured by the
Peak Signal-to-Noise Ratio (PSNR) metric. As depicted in Fig.
6, the rate-distortion performance of the neural video compres-
sion network, SSF-FLaWin, surpasses that of traditional video
codecs such as H.264 and H.265, while achieving comparable
performance with VTM [52]. These findings clearly demon-
strate the effectiveness of the FLaWin Transformer block in
enhancing video compression performance. Furthermore, our
results strongly emphasize the considerable advantage of video
compression over image compression when applied to the
SDOML dataset. This highlights the effectiveness of exploiting
the temporal redundancies inherent in video data, which leads
to significantly improved compression efficiency.

V. CONCLUSION

we have presented a Transformer-based neural video com-
pression approach for the NASA’SDO mission. Our experi-
mental results have clearly demonstrated the effectiveness of
applying video compression techniques to the dataset, resulting
in improved compression ratios. This improvement can be
attributed to the high temporal correlation observed between
the images in the dataset. Additionally, we have conducted
an in-depth investigation into the coding efficiency of the
Swin Transformer and FLaWin Transformer-based networks.
The findings indicate the potential of these architectures for
achieving efficient video compression. Overall, our work high-
lights the benefits of utilizing advanced Transformer models
for enhancing video compression in the context of the SDO
mission.
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[16] J. Ballé, D. Minnen, S. Singh, S. J. Hwang, and N. Johnston, “Variational
image compression with a scale hyperprior,” in ICLR, 2018.
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